A p.c.f. self-similar set with no self-similar energy
نویسندگان
چکیده
منابع مشابه
PCF self-similar sets and fractal interpolation
The aim of this paper is to show, using some of Barnsley’s ideas, how it is possible to generalize a fractal interpolation problem to certain post critically finite (PCF) compact sets in R. We use harmonic functions to solve this fractal interpolation problem. © 2013 IMACS. Published by Elsevier B.V. All rights reserved. MSC: 28A78; 58E20
متن کاملEvery Graph is a Self - Similar Set
In this paper we prove that every graph (in particular S1) is a selfsimilar space and that [0, 1] is a self-similar set that is not the product of topological spaces, answering two questions posed by C. Ruiz and S. Sabogal in [6].
متن کاملDynamical boundary of a self - similar set
Given a self-similar set E generated by a finite system Ψ of contracting similitudes of a complete metric space X we analyze a separation condition for Ψ , which is obtained if, in the open set condition, the open subset of X is replaced with an open set in the topology of E as a metric subspace of X. We prove that such a condition, which we call the restricted open set condition, is equivalent...
متن کاملThe Resolvent Kernel for Pcf Self-similar Fractals
For the Laplacian ∆ defined on a p.c.f. self-similar fractal, we give an explicit formula for the resolvent kernel of the Laplacian with Dirichlet boundary conditions, and also with Neumann boundary conditions. That is, we construct a symmetric function G(λ) which solves (λI − ∆)−1 f (x) = ∫ G(λ)(x, y) f (y) dμ(y). The method is similar to Kigami’s construction of the Green kernel in [Kig01, §3...
متن کاملمروری بر کتاب self-similar groups
خودسانی یا فرکتالی بودن پدیده ای مهم در طبیعت است که در بسیاری از وجوه تمدن جدید انعکاس یافته است. این پدیده علاوه بر هنر، در فیزیک، شیمی علوم پزشکی و علوم کامپیوتر نیز رخ می نماید. خودسانی در مباحث مختلفی از ریاضیات و مدلسازی ریاضی از جمله دستگاههای دینامیکی و آشوب، فرآیندهای تصادفی و فیزیک آماری، توپولوژی و هندسه فرکتالی نیز ظاهر می شود.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fractal Geometry
سال: 2019
ISSN: 2308-1309
DOI: 10.4171/jfg/82